

7, ул. Автогенная, г. Харьков, 61099, Украина. Тел.: (+38-057) 728-1244, 728-1241. Факс: (+38-057) 728-1243, (+38-0572) 946-830 E-mail: market@yuzhcable.com.ua

ПвЭгаПнг-HF-150 1x1200 ТУ У 31.3-00214534-060:2011

Кабели силовые с медной ТПЖ, изоляцией из сшитого полиэтилена, продольной и поперечной герметизацией экрана и наружной оболочкой из полимерной композиции, не распространяющие горение и не содержащие галогенов

Технические требования к кабелям соответствуют IEC 60840

Кабели применяются для прокладки:

- в помещениях, туннелях, каналах, шахтах, сухом грунте и на открытом воздухе под навесом
- на объектах, где предъявляются требования к пониженному выделению дыма и коррозионноактивных газов (АЭС, метрополитен, крупные промышленные объекты, высотные здания и т.д.)

Возможно изготовление кабелей с экструдированным полупроводящим слоем по наружной оболочке. Пример записи при заказе:

ПвЭгаПнг-HF-П-150 1x1200/95 ТУ У 31.3-00214534-060:2011

Экструдированный полупроводящий слой по наружной оболочке обеспечивает возможность корректного испытания кабельной линии с участками подземной прокладки в полимерных трубах.

Возможно изготовление кабелей с интегрированным волоконно-оптическим модулем.

Пример записи при заказе:

ПвЭгаПнг-HF-150 1x1200/95 (ОМ) ТУ У 31.3-00214534-060:2011

В совокупности с системой DTS, интегрированный волоконно-оптический модуль может выполнять роль распределенного датчика температуры кабельной линии.

Возможно изготовление кабеля с герметизированной токопроводящей жилой.

Пример записи при заказе:

ПвЭгаПнг-НF-150 1х1200/95 (г) ТУ У 31.3-00214534-060:2011

Код пожарной безопасности в соответствии с ДСТУ 4809:2007: ПБ122122000

Изделия данной марки отвечают требованиям:

- стойкость к распространению пламени при одиночной прокладке
- стойкость к распространению пламени при прокладке в пучках по категории А
- класс T k 2 по токсичности продуктов сгорания неметаллических элементов (показатель токсичности от $40 \text{ до } 120 \text{ г/m}^3$)
- класс ДТк1 по дымообразующей способности при тлении неметаллических элементов (коэффициент дымообразования от 50 до 500 m^2/kr)
- класс ДПк2 по дымообразующей способности при горении (минимальный световой поток более 60 %)
- класс Кк2 по коррозионной активности продуктов сгорания неметаллических элементов (количество галогеноводородов менее 150 мг/г, pH более 4.3, удельная электропроводность менее 10 мкСм/мм)

ПвЭгаПнг-HF-150 1x1200 ТУ У 31.3-00214534-060:2011

Кабели силовые с медной ТПЖ, изоляцией из сшитого полиэтилена, продольной и поперечной герметизацией экрана и наружной оболочкой из полимерной композиции, не распространяющие горение и не содержащие галогенов

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Номинальное напряжение	кВ	150
Максимальное напряжение	кВ	170
Номинальное сечение токопроводящей жилы	MM^2	1200
Минимальное сечение экрана	MM^2	35
Уровень частичных разрядов при номинальном	рC	6
напряжении, не более		
Допустимый ток короткого замыкания по экрану	кА	14.2
минимального сечения		
Максимально допустимый ток короткого замыкания по	кА	172
токопроводящей жиле		
Длительно допустимые токовые нагрузки при прокладке в в	оздухе *	
• треугольником с заземлением экрана с двух сторон	Α	1476
• треугольником с заземлением экрана с одной стороны	Α	1746
или перекрестным заземлением экрана		
• плоскостью с заземлением экрана с двух сторон	Α	1358
• плоскостью с заземлением экрана с одной стороны	Α	2086
или перекрестным заземлением экрана		
Длительно допустимые токовые нагрузки при прокладке в г	рунте *	
• треугольником с заземлением экрана с двух сторон	Α	1012
• треугольником с заземлением экрана с одной стороны	Α	1258
или перекрестным заземлением экрана		
• плоскостью с заземлением экрана с двух сторон	Α	824
• плоскостью с заземлением экрана с одной стороны	Α	1337
или перекрестным заземлением экрана		
Максимально допустимая температура жилы		
• длительно	° C	+90
• в аварийном режиме	° C	+130
• при коротком замыкании	° C	+250
Диапазон рабочих температур	° C	-60 +50
Минимальный радиус изгиба при прокладке	ММ	1712
Расчетный наружный диаметр кабеля (справочно) **	ММ	107
Масса (ориентировочно)	кг/км	20760
Расчетная строительная длина кабеля и масса брутто	M, T	No 30УД-130: **** 344 • 10.
при поставке на барабанах ***		0
_		

Примечания:

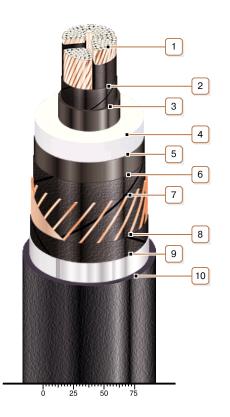
При заказе строительную длину изделия необходимо согласовывать с изготовителем

^{*} Длительно допустимые токовые нагрузки рассчитаны для следующих условий: температура жилы 90 °C, температура воздуха 30 °C, температура грунта 20 °C, фактор нагрузки 1.0, удельное тепловое сопротивление грунта 1.0 °K • м/Вт, глубина прокладки в грунте 1.5 м, при прокладке в плоскости расстояние между кабелями в свету равно диаметру кабеля, при прокладке треугольником кабели проложены вплотную

^{**} Возможно отклонение наружного диаметра от расчетного до \pm 10 %

^{***} The deviation of the actual gross weight from the specified value may be $\pm\,7~\%$

^{****} Вариант поставки на неполном барабане



7, ул. Автогенная, г. Харьков, 61099, Украина. Тел.: (+38-057) 728-1244, 728-1241. Факс: (+38-057) 728-1243, (+38-0572) 946-830 E-mail: market@yuzhcable.com.ua

ПвЭгаПнг-HF-150 1x1200 ТУ У 31.3-00214534-060:2011

Кабели силовые с медной ТПЖ, изоляцией из сшитого полиэтилена, продольной и поперечной герметизацией экрана и наружной оболочкой из полимерной композиции, не распространяющие горение и не содержащие галогенов

КОНСТРУКЦИЯ

1. Медная сегментная многопроволочная уплотненная токопроводящая жила

Примечания:

- Возможно изготовление кабеля с герметизированной токопроводящей жилой.
- Скрутка сегментов токопроводящей жилы на рисунке не показана
- 2. Слой обмотки полупроводящей водонабухающей лентой
- 3. Внутренний экструдированный полупроводящий слой
- 4. Изоляция из сшитого полиэтилена
- 5. Внешний экструдированный полупроводящий слой
- 6. Слой обмотки полупроводящей водонабухающей лентой
- 7. Медный экран

Примечание: Возможно изготовление кабеля с интегрированным в экран волоконно-оптическим модулем, в т.ч. в качестве датчика системы DTS

- 8. Слой обмотки полупроводящей водонабухающей лентой
- 9. Алюмополимерная лента
- 10. Наружная оболочка из полимерной композиции, не распространяющей горение и не содержащей галогенов

Примечание: Возможно изготовление кабеля с экструдированным полупроводящим слоем по наружной оболочке